LM334

650µA, 9MHz, Rail-to-Rail I/O CMOS Operational Amplifier

DESCRIPTIONS:

The LM334 (quad) is low noise, low voltage, and low power operational amplifier, that can be designed into a wide range of applications. The LM334 have a high gain-bandwidth product of 9MHz, a slew rate of $3.7V/\mu$ s, and a quiescent current of 650μ A/ amplifier at 5V.

The LM334 is designed to provide optimal performance inlow voltage and low noise systems. It provides rail-to-rail output swing into heavy loads. The input common-mode voltage range includes ground, and the maximum input offset voltage are 3.5mV for LM334.

It is specified over the extended industrial temperature range (-40 $^{\circ}$ C to +125 $^{\circ}$ C). The operating range is from 2.5V to 5.5V.

FEATURES

- ♦ Low Cost
- ◆ Rail-to-Rail Input and Output: 0.8m V Typical VOS
- ◆ High Gain- Bandwidth Product: 9 MHz
- ◆ High Slew Rate: 8.0V/µs
- ◆ Settling Time to 0.1% with 2V Step: 1.2µs
- Overload Recovery Time: 0.4µs
- Low Noise: 8nV/Hz
- ♦ Operates on 2.5V to 5.5V Supplies
- ◆ Input Voltage Range = -0.1V to + 5.6V with VS = 5.5V
- ◆ Low Power: 650µA/Amplifier Typical Supply Current

PUOLOP 迪浦

650µA, 9MHz, Rail-to-Rail I/O CMOS Operational Amplifier

APPLICATIONS

- Sensors
- ♦ Audio
- Active Filters
- A/D Converters
- Communications
- Test Equipment
- Cellular and Cordless Phones
- Laptops and PDAs
- Photodiode Amplification
- Battery-Powered Instrumentation

PIN CONNECTION

ABSOLUTE MAXIMUM RATINGS *1

Characteristic		Value	Unit
Supply Voltage		7.5	V
Common- mode inpu	t voltage	(-Vs)-0.5V∼(+Vs)+0.5V	V
Operating Temperat	ure	-55 ~+150	°C
Storage Temperatur	е	-65 ~+150	°C
Junction temperature		160	°C
Lead temperature range (soldering 10sec)		260	°C
ESD susceptibility	нвм	1500	V
	мм	400	V

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PUOLOP 迪浦

650µA, 9MHz, Rail-to-Rail I/O CMOS Operational Amplifier

ELECTRICAL CHARACTERISTICS

(unless otherwise specified: VCM = VS/2, $RL = 600\Omega$, $TA = 25^{\circ}C$)

PARAMETER	CONDITION	ТҮР	MIN/MAX OVER TEMPERATURE					
		+25 ℃	+25 ℃	0℃ to 70℃	-40℃ to 85℃	-40℃ to 125℃	UNITS	MIN/ Max
INPUT CHARACTERISTICS								
Input Offset Voltage (V _{os})		1	4	4.5	4.75	5	mV	MAX
Input Bias Current (I _B)		1					pА	TYP
Input Offset Current (I _{os})		1					pА	TYP
Common-Mode Voltage Range (V _{CM})	V _s = 5.5V	-0.1 to +5.6					V	TYP
Common-Mode Rejection Ratio(CMRR)	$V_{S} = 5.5V$, $V_{CM} = -0.1V$ to 4 V	91	75	74	73	72.5	dB	MIN
	$V_{\rm S}$ = 5.5V, $V_{\rm CM}$ = - 0.1V to 5.6 V	86	64	64	63	62	dB	MIN
Open-Loop Voltage Gain(A _{OL})	$R_L = 600\Omega$, $Vo = 0.15V$ to $4.85V$	90	84	81	80	72	dB	MIN
	R_{L} =10K Ω ,Vo = 0.05V to 4.95V	100	95	90	88	77	dB	MIN
Input Offset Voltage Drift $(\Delta V_{OS} / \Delta_T)$		2.1					µV/℃	TYP
OUTPUT CHARACTERISTICS								
Output Voltage Swing from Rail	R _L = 600Ω	0.1					v	TYP
	R _L = 10KΩ	0.015					V	TYP
Output Current (I _{OUT})		57	53	52	50	45	mA	MIN
Closed-Loop Output Impedance	F = 1MHz, G = +1	5.7					Ω	TYP
POWER-DOWN DISABLE								
Turn-On Time		2.2					μs	TYP
Turn-Off Time		0.8					μs	TYP
DISABLE Voltage-Off			0.8				V	MAX
DISABLE Voltage-On			2				V	MIN
POWER SUPPLY								
Operating Voltage Range			2.5	2.5	2.5	2.5	v	MIN
			5.5	5.5	5.5	5.5	v	MAX
Power Supply Rejection Ratio (PSRR)	V _s = +2.5 V to + 5.5 V		0.0	0.0	0.0	0.0		100 0 0
	$V_{CM} = (-V_S) + 0.5V$	100	80	79	78	77	dB	MIN
Quiescent Current/ Amplifier (I _Q)	$I_{OUT} = 0$	0.65	0.8	0.9	0.92	1.02	mA	MAX
Supply Current when Disabled	1001 0	0.00	0.0	0.0	0.02	1.02		
		0.16	1				μA	MAX
DYNAMIC PERFORMANCE	R _L = 600Ω							
Gain-Bandwidth Product (GBP)		9.0					MHz	TYP
Phase Margin(ϕ_0)		63.5					degrees	TYP
Full Power Bandwidth(BW _P)	<1% distortion	400					KHz	TYP
Slew Rate (SR)	G = +1, 2 V Output Step	8.0					V/µs	TYP
Settling Time to 0.1%(t _s)	G = +1, 2 V Output Step	0.36						TYP
Overload Recovery Time	V_{IN} · Gain = Vs	0.36					μs	TYP
	VIN Gain - VS	0.4					μs	
		•					n\//	TVD
Voltage Noise Density (e _n)	f = 1 kHz	8					nV/\sqrt{Hz}	TYP
	f = 10kHz	6.4					$nV/_{\sqrt{Hz}}$	TYP
Current Noise Density(i _n)	f = 1kHz	10					fA/\sqrt{Hz}	TYP

APPLICATION SUMMARY

Driving Capacitive Loads

The LM334 can directly drive 1000pF in unitygain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation.

PUOLOP 迪浦

Figure 1. Indirectly Driving Heavy Capacitive Load

Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1.

The isolation resistor R ISO and the load capacitor C L form a zero to increase stability. The bigger the R ISO resistor value, the more stable V OUT will be. Note that this method results in a loss of gain accuracy because R ISO forms a voltage divider with the RLOAD.

An improvement circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. RF provides the DC accuracy by connecting the inverting signal with the output. CF and RISO serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The LM334 family operates from either a single +2.5 V to +5.5V supply or dual ±1.25V to ±2.75V supplies. For single-supply operation, bypass the power supply VDD with a 0.1μ F ceramic capacitor which should be placed close to the VDD pin. For dual-supply operation, both the VDD and the VSS supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.

LM334

____ PUOLOP 迪浦

650µA, 9MHz, Rail-to-Rail I/O CMOS Operational Amplifier

Good PC board layout techniques optimize performance by decreasing the amount of

stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths and widths byplacing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency big current loop area small to minimize the EMI (electromagnetic interfacing).

Figure 3. Amplifier with Bypass Capacitors Grounding

Grounding

A ground plane layer is important for LM334circuit design. The length of the current path speed currents in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be parallel. This helps reduce unwanted positive feedback.

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistors ratios are equal (R 4/R 3 = R 2/R 1), then VOUT = $(Vp - Vn) \times R 2/R 1 + VREF$.

Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with the high input impedance.

Figure 5. Instrumentation Amplifier Low Pass Active Filter

Low Pass Active Filter

The low pass filter shown in Figure 6 has a DC gain of (-R2 /R1) and the -3dB corner frequency is $1/2 \pi R_2C$. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.

Figure 6. Low Pass Active Filter

PUOLOP 迪浦

TYPICAL CURVE

(At TA =25 °C, VCM = VS /2, RL =600 Ω , unless otherwise noted)

- 7 -

PUOLOP 迪浦

remperature (C)

PUOLOP 迪浦

Output Voltage Swing vs. Output Current

Small-Signal Overshoot vs. Load Capacitance

PUOLOP 迪浦

PUOLOP 迪浦

650µA, 9MHz, Rail-to-Rail I/O CMOS Operational Amplifier

OUTLINE DRAWING

DETAIL F

COMMON DIMENSIONS (UNITS OF MEASURE IS mm)							
	MIN	NORMAL	MAX				
A	8.500	8.600	8.700				
B	3.800	3.900	4.000				
B1	3.750	3.850	3.950				
^A C	1.300	1.400	1.500				
C1	0.600	0.650	0.700				
D	5.800	6.000	6.200				
L	0.450	0.600	0.750				
b	0.350	0.400	0.450				
⊾h	0.050	0.100	0.250				
е	1.270TYPE						
θ1	12° TYPE						
θ2	12° TYPE						
θკ	0°~ 8°						